The synaptotagmin juxtamembrane domain is involved in neuroexocytosis
نویسندگان
چکیده
Synaptotagmin is a synaptic vesicle membrane protein which changes conformation upon Ca(2+) binding and triggers the fast neuroexocytosis that takes place at synapses. We have synthesized a series of peptides corresponding to the sequence of the cytosolic juxtamembrane domain of synaptotagmin, which is highly conserved among different isoforms and animal species, with or without either a hexyl hydrophobic chain or the hexyl group plus a fluorescein moiety. We show that these peptides inhibit neurotransmitter release, that they localize on the presynaptic membrane of the motor axon terminal at the neuromuscular junction and that they bind monophosphoinositides in a Ca(2+)-independent manner. Based on these findings, we propose that the juxtamembrane cytosolic domain of synaptotagmin binds the cytosolic layer of the presynaptic membrane at rest. This binding brings synaptic vesicles and plasma membrane in a very close apposition, favouring the formation of hemifusion intermediates that enable rapid vesicle fusion.
منابع مشابه
The first C2 domain of synaptotagmin is required for exocytosis of insulin from pancreatic beta-cells: action of synaptotagmin at low micromolar calcium.
The Ca2+- and phospholipid-binding protein synaptotagmin is involved in neuroexocytosis. Its precise role and Ca2+-affinity in vivo are unclear. We investigated its putative function in insulin secretion which is maximally stimulated by 10 microM cytosolic free Ca2+. The well-characterized synaptotagmin isoforms I and II are present in pancreatic beta-cell lines RINm5F, INS-1 and HIT-T15 as sho...
متن کاملDifferential regulation of transmitter release by alternatively spliced forms of synaptotagmin I.
We discovered a novel alternatively spliced form of synaptotagmin I (Syt I). This splicing event is conserved over evolution and, in Aplysia, results in a two amino acid insert in the juxtamembrane domain of Syt I (Syt IVQ). Both Syt I and Syt IVQ are localized to synaptic vesicles; however, we also observed punctae that contained one or the other spliced products. Both Syt I and Syt IVQ are ph...
متن کاملMolecular origins of synaptotagmin 1 activities on vesicle docking and fusion pore opening
Synaptotagmin 1 (Syt1), a major Ca(2+) sensor in neuroexocytosis, utilizes SNARE- and membrane-binding to regulate vesicle fusion, a required process for neurotransmitter release at the synapse. However, the mechanism by which Syt1 orchestrates SNARE- and membrane- binding to control individual vesicle fusion steps is still unclear. In this study, we used a number of single vesicle assays that ...
متن کاملThe juxtamembrane region of synaptotagmin 1 interacts with dynamin 1 and regulates vesicle fission during compensatory endocytosis in endocrine cells.
Synaptotagmin 1 (Syt1) is a synaptic vesicle protein that is important for the kinetics of both exocytosis and endocytosis, and is thus a candidate molecule to link these two processes. Although the tandem Ca(2+)-binding C2 domains of Syt1 have important roles in exocytosis and endocytosis, the function of the conserved juxtamembrane (jxm) linker region has yet to be determined. We now demonstr...
متن کاملInternalization signals in synaptotagmin VII utilizing two independent pathways are masked by intramolecular inhibitions.
The synaptotagmin family of membrane proteins has been implicated in both exocytosis and endocytosis. Synaptotagmin I, a protein containing two tandem C2 domains (the C2A and the C2B) in its cytoplasmic tail, is involved in regulated exocytosis of synaptic vesicles as well as compensatory endocytosis. A related family member, synaptotagmin VII, is involved in multiple forms of regulated exocyto...
متن کامل